Катушка Тесла: что это, для чего она нужна и как создать ее своими руками в домашних условиях. Что такое мини катушка тесла Составные части и принцип работы


Катушка Тесла, которая несет имя изобретателя, является колебательным контуром, который состоит из двух катушек. Оно позволяет получить ток большого номинала и частоты.

Итак, что же нам понадобится:
- выключатель;
- резистор на 22 кОм;
- транзистор 2N2222A;
- коннектор для кроны;
- ПВХ труба длиной 8.5 см и диаметром 2 см;
- крона на 9 вольт;
- медная проволока с сечением 0.5 мм;
- кусок ламината;
- клеевой пистолет;
- паяльник;
- небольшой отрезок провода длиной 15 см.


Первым делом мы должны намотать медную проволоку на ПВХ трубку, отступая от краев приблизительно на 0.5 см. Для того, чтобы сначала проволока не отматывалась, автор идеи советует зафиксировать ее конец бумажным скотчем.




После того, как намотали проволоку, фиксируем также второй конец бумажным скотчем, чтобы проволока не наматывалась. Вырезаем конец проволоки кусачками. Катушка готова.






Теперь нужно приклеить ее к основе из куска ламината клеевым пистолетом.




На куске ламината также приклеиваем выключатель, транзистор и коннектор кроны.








Переходим к подсоединению проводов. Нижний медный провод, идущий от катушки припаиваем к среднему контакту на транзисторе.






Также к среднему контакту припаиваем резистор.


Кусок провода нам понадобится для вторичной обмотки. Его обматываем два раза вокруг катушки и фиксируем оба конца провода при помощи термоклея на основе.






Верхний конец провода вторичной обмотки припаиваем к свободному концу резистора.




Второй конец провода вторичной обмотки припаиваем к правому контакту на транзисторе. Для облегчения работы можно воспользоваться короткими отрезками проводков.


Далее контакты от резистора вместе с проводом от вторичной обмотки припаиваем к контакту от выключателя.

Тесла – это единица измерения электромагнитной индукции, названная так по фамилии известного физика-практика Никола Тесла. Этот учёный прославился своим участием в «войне тока», исследованиями в сфере электричества и электромагнитной индукции. Именно благодаря ему сейчас в бытовых целях используется именно переменный ток от крупных производящих предприятий.

Кроме того Никола Тесла известен созданием трансформатора своего имени, знаменитого тем, что обладает довольно интересными визуальными и физическими характеристиками.

Тайна Николя Тесла

Ранние годы Никола Теслы не предвещали ничего странного: учился, получил аттестат зрелости, после чего закончил Грацкий технический университет. Все изменилось в 1880 году. После смерти отца Никола пришлось переехать в Прагу, где он устроился работать инженером в одну из государственных компаний, занимающихся телефонным сообщением. В 1882 году у молодого Никола появляется теория о вращающемся магнитном поле.

Что достаточно интересно, одновременно законы электромагнитной индукции и вращающего поля заинтересовали и другого физика – итальянца Г. Феррариса. Они практически одновременно приступают к работе над электродвигателем, использующим энергию этого поля. В 1882 году Тесла увольняется из телефонной компании и переходит работать в компанию Эдисона, и с 1883 года Никола работает в Страсбурге, занимаясь асинхронным двигателем в свободное от основных задач время. В 1883 году двигатель был окончен, а его работа была продемонстрирована учёному совету.

По окончанию работ над вокзалом в Страсбурге Тесла возвращается в Париж, но так как руководство компании не выплатило ему причитающейся премии за проведённые работы, он увольняется и перебирается на постоянное место жительства в США. Существует ряд версий, что молодому учёному было предложено перебираться в Российскую империю, что, однако, представляется довольно спорным вопросом истории. В Российской Империи на тот момент не было достаточно развитых производств, где бы пригодился опыт молодого инженера-электрика.

Летом 1884 года по прибытию в Нью-Йорк Тесла вновь устраивается на работу в компании, принадлежащей Томасу Эдисону. Но уже в 1885 году между Эдисоном и молодым инженером Теслой возникает конфликт на почве спора, в результате которого Никола увольняется из компании. Нужно отметить, что в очередной раз причиной ссоры послужили финансовые средства, которые были обещаны Эдисоном за работу по усовершенствованию двигателей постоянного тока, но эти деньги так и не были выплачены. Речь шла о довольно значительной сумме в 50 тыс. долларов США.

После увольнения Тесла открыл свою компанию, в ходе развития которой он снова перешёл дорогу Томасу Эдисону, который был сторонником развития электросетей постоянного тока, в то время как Тесла предугадал выгоды переменного. В ходе конкурентной борьбы между этими направлениями началась так называемая «война токов», закончившаяся только в 2007 году.

Тем не менее, компания Тесла динамично развивалась, а сам учёный выдвигал все новые теории и предъявлял на суд учёного сообщества новые устройства и изобретения. Так, в 1917 году Теслой было предложено первое в мире устройство радиолокации для обнаружения подводных лодок. Но основной темой исследования Никола по-прежнему был закон электромагнитной индукции.

8 января 1943 года Никола Тесла умер в гостинице «Нью-Йоркер». С этим закончилась и эпоха его изобретений. В 20-ом веке вряд ли найдётся равный ему по живости ума и видению мира физик. Именем Теслы не названы законы физики, так как исследуемая им теория электромагнитного резонанса была открыта ещё до него. Тесла больше известен как физик-практик, созидатель, изобретавший новые устройства и пробивавший их использование.

Деятельность Н. Теслы до сих пор окружена загадками и тайнами, среди всего прочего ему приписывают взрыв на реке Тунгуска, известный как Тунгусский метеорит, не оставивший после себя никаких следов. Тайна Николы Теслы – это и землетрясение в Нью-Йорке, и мифические «Лучи смерти», и, конечно, Филадельфийский эксперимент и исчезновение эсминца «Элдридж».

Легенды о тайне Теслы будоражат воображения, хотя зачастую от них остались только слухи и байки очевидцев.

Трансформатор Теслы

Никола Тесла известен своими исследованиями в сфере высокочастотных резонансных трансформаторов, классическим образцом которых является трансформатор Теслы.

Патент на него был получен Никола в 1896 году, в нем трансформатор описывался как устройство для производства высокочастотных и высокопотенциальных токов. В этом аппарате использовались резонансные стоячие электромагнитные волны в двух катушках.

Первичная – включает в себя небольшое количество витков и служит рабочим элементом искрового контура, в котором также находится конденсатор. Вторичной обмоткой является прямая катушка, состоящая из большого количества витков обмотки. Если частота колебаний обоих контуров совпадает, то между концами катушки образуется высокое переменное напряжение. Этот эффект до настоящего времени используется в антеннах и усилителях.

При работе катушки возникают достаточно интересные вторичные эффекты, в том числе визуально различимые разряды четырёх типов:

  1. Стримеры, похожие на молнии, – разряды, состоящие из ионизированных частиц газа, стекающих на землю, но не уходящих в неё;
  2. Спарки – искровые разряды в виде молний, уходящих в землю, пучки ярких быстро меняющих цвет и направление искровых каналов;
  3. Дуговые разряды – возникает при высокой мощности трансформатора между ним и заземлённым предметом, который находится в непосредственной близости от устройства;
  4. Коронные – разряды в виде свечения ионизированного воздуха вокруг работающего трансформатора.

Нужно отметить, что большая часть световых эффектов возникает только при большой мощности работающего устройства. Обычным спутником высокочастотного трансформатора Теслы служат стримеры.

Мини-катушка Теслы своими руками

Энтузиасты собирают такие катушки из-за интересных оптических и физических характеристик этого устройства. Так, при работе трансформатора возникает свечение стримеров, кроме того ощутимое магнитное поле вокруг устройства.

Для того чтобы собрать трансформатор малой мощности самостоятельно, понадобятся навыки работы с паяльником, инструментом и некоторые материалы:

  • резистор, 22 кОм;
  • транзистор типа 2N2222A или его аналог;
  • батарея типа «Крона»;
  • медный эмаль-провод сечением 0,5м², около 200 см;
  • медный эмаль-провод сечением 0,5 мм, длиной около 15 см;
  • ПВХ или другая трубка из непроводящего материала для намотки.

На трубку ПВХ нужно ровно, без перехлестов, намотать 800-1000 витков проволоки, это будет вторичный контур трансформатора. Для удобства намотки конец провода лучше зафиксировать липкой лентой. Сама катушка в вертикальном положении фиксируется на основании из текстолита или ламината.

На это же основание устанавливается коннектор от батареи типа «Крона» и выключатель. К среднему контакту транзистора, также зафиксированному на основании, припаивается нижний провод от вторичной обмотки катушки, туда же припаивается резистор. Первичная катушка наматывается из десятка витков второго провода, поверх вторичной.

Верхний провод первичной обмотки припаивается к свободному контакту резистора, нижний конец провода ² к правому контакту транзистора. После чего концы проводов соединяются с выключателем и элементом питания.

Эта мини-катушка Тесла крайне маломощна – её поля хватит только на то, чтобы зажечь близко поднесённую лампу. Но в тоже время нужно отметить, что высокочастотные резонансные трансформаторы, особенно высокой мощности, являются достаточно опасными устройствами. Их работа может влиять как на незащищённые электроприборы, так и на состояние человека.

Законы электромагнитной индукции, исследованные Фарадеем и развитые Никола Теслой, по-прежнему нерушимы. Несмотря на флёр таинственности и загадочности, окружавший всю сознательную жизнь этого учёного, его опыты в большей степени привели к развитию физики и эволюции электросистем переменного тока.

Нужно отметить, что не будь Тесла столь настойчивым или уступи он Эдисону, сейчас на просторах мира работали бы не АЭС и ГЭС, а мини-электростанции, питавшие небольшие районы. Не нужно думаю напоминать, что дальняя передача постоянного тока крайне затруднена и требует большого сечения проводов.

Известен Тесла и участием в полумифическом Филадельфийском эксперименте, именно с его именем и исследованиями связывают исчезновение эсминца «Элдридж».

«Война токов», начатая в начале XX века между Эдисоном и Теслой, шла и после их смерти. Так, в некоторых европейских странах до 60-х годов использовался постоянный ток во внутренних сетях. Последний пользователь постоянного тока в США был отключён только в 2007 году. Нужно отметить, что именно благодаря этой борьбе появились поезда Вестингауза и казнь на электрическом стуле. Её пролоббировал Эдисон, чтобы показать опасность переменного электрического тока. Но, несмотря на опасность для человека, законы физики не обмануть, именно переменный ток обладает рядом преимуществ при передаче его на большие расстояния.

Что такое тесла? Это единица измерения электромагнитной индукции, получившее своё название в честь величайшего учёного-физика ХХ-века, посвятившего свою жизнь изучению явлений магнетизма.

Видео

Катушка Тесла представляет две катушки L1 и L2, которая посылает большой импульс тока в катушку L1. У катушек Тесла нет сердечника. На первичной обмотке наматывают более 10 витков. Вторичная обмотка тысячу витков. Еще добавляют конденсатор, чтобы минимизировать потери на искровой разряд.

Катушка Тесла выдает большой коэффициент трансформации. Он превышает отношение числа витков второй катушки к первой. Выходная разность потенциалов катушки Тесла бывает больше нескольких млн вольт. Это создает такие разряды электрического тока, что эффект получается зрелищным. Разряды бывают длины в несколько метров.

Принцип катушки Тесла

Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры.

Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле.

Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче.

Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка.

Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора.

Вторая катушка и C s образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов.

Главные свойства катушки Тесла:

  • Частота второго контура.
  • Коэффициент обеих катушек.
  • Добротность.

Коэффициент связи обуславливает быстроту передачи энергии из одной обмотки во вторичную. Добротность дает время сохранения энергии контуром.

Подобие с качелями

Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.

Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.

Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.

Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же .

Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.

Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.

Главные катушки Тесла

Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя.

  • Катушка Тесла, имеющая в составе разрядник. Это начальная обычная конструкция. С малой мощностью это два провода. С большой мощностью – разрядники с вращением, сложные. Эти трансформаторы хороши, если необходим мощный стример.
  • Трансформатор на радиолампе. Он работает бесперебойно и дает утолщенные стримеры. Такие катушки применяют для Тесла высокой частоты, они по виду похожи на факелы.
  • Катушка на полупроводниковых приборах. Это транзисторы. Трансформаторы действуют постоянно. Вид бывает различным. Этой катушкой легко управлять.
  • Катушки резонанса в количестве двух штук. Ключами являются полупроводники. Эти катушки самые сложные для настройки. Длина стримеров меньше, чем с разрядником, они хуже управляются.

Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка).

Главные элементы катушки Тесла

В разных конструкциях основные черты и детали общие.

  • Тороид – имеет 3 опции.Первая – снижение резонанса.
    Вторая – скапливание энергии разряда. Чем больше тороид, тем содержится больше энергии. Тороид выделяет энергию, повышает его. Это явление будет выгодным, если применять прерыватель.
    Третья – создание поля со статическим электричеством, отталкивающим от второй обмотки катушки. Эта опция выполняется самой второй катушкой. Тороид ей помогает. Из-за отталкивания стримера полем, он не бьет по короткому пути на вторую обмотку. От применения тороида несут пользу катушки с накачкой импульсами, с прерывателями. Значение наружного диаметра тороида в два раза больше второй обмотки.
    Тороиды можно изготовить из гофры и других материалов.
  • Вторичная катушка – базовая составляющая Тесла.
    Длина в пять раз больше диаметра мотки.
    Диаметр провода рассчитывают, на второй обмотке влезало 1000 витков, витки наматывают плотно.
    Катушку покрывают лаком, чтобы защитить от повреждений. Можно покрывать тонким слоем.
    Каркас делают из труб ПВХ для канализации, которые продаются в магазинах для строительства.
  • Кольцо защиты – служит для попадания стримера в первую обмотку, не повреждая. Кольцо ставится на катушку Тесла, стример по длине больше второй обмотки. Он похож на виток провода из меди, толще провода первой обмотки, заземляется кабелем к земле.
  • Обмотка первичная – создается из медной трубки, использующейся в кондиционерах. Она имеет низкое сопротивление, чтобы большой ток шел по ней легко. Толщину трубы не рассчитывают, берут примерно 5-6 мм. Провод для первичной обмотки применяют с большим размером сечения.
    Расстояние от вторичной обмотки выбирается из расчета наличия необходимого коэффициента связи.
    Обмотка является подстраиваемой тогда, когда первый контур определен. Место, перемещая ее регулирует значение частоты первички.
    Эти обмотки изготавливают в виде цилиндра, конуса.

  • Заземление – это важная составляющая часть.
    Стримеры бьют в заземление, замыкают ток.
    Будет недостаточное заземление, то стримеры будут ударять в катушку.

Катушки подключены к питанию через землю.

Есть вариант подключения питания от другого трансформатора. Этот способ называется «магниферным».

Биполярные катушки Тесла производят разряд между концами вторичной обмотки. Это обуславливает замыкание тока без заземления.

Для трансформатора в качестве заземления применяют заземление большим предметом, проводящим электрический ток – это противовес. Таких конструкций немного, они опасны, так как имеет место высокая разность потенциалов между землей. Емкость от противовеса и окружающих вещей отрицательно влияет на них.

Это правило действует для вторичных обмоток, у которых длина больше диаметра в 5 раз, и мощностью до 20 кВА.

Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками.

Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки.

Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см.

Для первичной катушки вам понадобится каркас на пару сантиметров больше первого. Также понадобится несколько радиодеталей. Это транзистор D13007, либо его аналоги, небольшая плата, несколько резисторов, 5, 75 килоом 0,25 Вт.

Проволоку мотаем на каркас около 1000 витков без перехлестов, без больших промежутков, аккуратно. Можно управиться за 2 часа. Когда намотка закончена, намазываем обмотку лаком в несколько слоев, либо другим материалом, чтобы она не пришла в негодность.

Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков.

Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток.

Выходное напряжение трансформатора будет достигать миллионы вольт. Это дает красивое зрелище в несколько метров.

Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей.

Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта.

  • Два провода скрепляются, оголенные концы были повернуты в сторону.
  • Выставляется зазор из расчета пробивания немного большем напряжении данной разности потенциалов. Для переменного тока разность потенциалов будет выше определенного.
  • Подключается питание катушке Тесла своими руками.
  • Наматывается вторичная обмотка 200 витков на трубу из изоляционного материала. Если все изготовлено по правилам, то разряд будет хороший, с ветвями.
  • Заземление второй катушки.

Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве.

Безопасность

Вторичная обмотка находится под напряжением, способным убить человека. Ток пробивания достигает сотен ампер. Человек может выжить до 10 ампер, поэтому не нужно забывать о мерах защиты.

Расчет катушки Тесла

Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.

Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).

Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.

Бифилярная катушка Тесла

Такой метод намотки провода распределяет емкость больше, чем при стандартной намотке.

Такие катушки обуславливают приближения витков. Градиент конусообразный, а не плоский, в середине катушки, или с провалом.

Емкость тока не изменяется. Из-за сближения участков разность потенциалов между витков во время колебаний повышается. Следовательно, сопротивление емкости при большой частоте в несколько раз снижается, а емкость увеличивается.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

В нашем мире постоянно происходят удивительные вещи. Вот и великий изобретатель Никола Тесла в свое время изобрел чудо техники – катушку Тесла. Это трансформатор, позволяющий повысить выходное напряжение и частоту электрического тока во много раз. В простонародье это устройство называют катушкой Тесла.

Сегодня большое количество техники использует принцип работы изобретения великого физика прошлых лет. Однако с того времени технологии усовершенствовались, поэтому появились более современные виды трансформаторов, однако их также называют катушками Тесла.

Виды катушек Тесла

  • Собственно, катушка самого Теслы (в составе использовался разрядник);
  • Трансформатор на радиолампе;
  • Катушка на транзисторах;
  • Катушки резонанса (две штуки).

Все катушки имеют схожий принцип работы, различаются только сложность их сборки и используемая электроника.


Рассматривая фото самодельных катушек Тесла, поневоле захочешь точно такую же себе домой. Ведь их работа настолько красивое зрелище, что невозможно оторвать глаз.

Однако многие опасаются браться за изготовление такого прибора, оправдывая это тем, что на работу уйдет много времени и сил, да и еще все это опасно для жизни.

Но заверяем вас, схема обычной катушки Тесла довольно проста. А потому приглашаем вам самостоятельно собрать это необычное устройство.

Пошаговая сборка катушки Тесла самостоятельно

Итак, высший пилотаж нам демонстрировать не нужно, поэтому будем делать самую простую катушку, использующую в своей сборке транзистор. Она наиболее щадящая по затратам времени и денег, а потому идеально нам подходит.


Строение катушки Тесла

  • Первичная катушка (первичный контур);
  • Вторичная катушка (вторичный контур);
  • Источник питания;
  • Заземление;
  • Кольцо защиты.

Это основные элементы трансформаторов. Нужно отметить, что в различных видах катушек могут встречаться и другие составляющие.

Принцип работы устройства

Источник питания подает на первичный контур нужное напряжение. После чего контур производит высокочастотные колебания, которые, в свою очередь, вынуждают вторичный контур создать свои колебания, идущие с первыми в резонансе. Благодаря этому, во второй катушке возникает ток с большим напряжением и частотой, который и образует столь ожидаемый эффект – стример. Теперь нужно собрать все элементы в одну кучу.

Необходимые материалы

  • В роли источника возьмем автомобильный аккумулятор (или любой другой источник постоянного напряжения 12-19 В);
  • Медный провод (желательно в эмали) диаметром от 0,1 до 0,3 мм. и длинной около 200 метров;
  • Еще один медный провод диаметром 1 мм;
  • Два каркаса (диэлектрика). Один (для вторичного контура) диаметром от 4 до 7 см. и длинной 15-30 см. Другой (для первичного контура) должен быть на несколько сантиметров больше в диаметре и короче в длине;
  • Транзистор D13007 (можно использовать другие, идентичные ему);
  • Плата;
  • Немного резисторов на 5 – 75 кОм, мощностью 0,25 Вт.


Сборка катушки Тесла самостоятельно дома

Вот мы плавно и подошли к сборке самой установки. Сначала создадим вторичный контур. Плотно без перехлестов наматываем тонкую проволоку диаметром 0,15 мм на длинный каркас. Нужно сделать не менее 1000 витков (но и сильно много не надо). После этого покрываем катушку лаком в несколько слоев (можно использовать и другие материалы), чтобы проволока не повредилась в дальнейшем.

Теперь о терминале. Он позволяет контролировать стриммеры, однако при небольших мощностях в нем нет необходимости, вместо этого можно просто вывести конец катушки вверх на несколько сантиметров.

Для другой катушки наматываем на оставшийся каркас толстую проволоку. Всего надо сделать 10 витков. Вторичный контур должен находиться внутри первичного.

Теперь устанавливаем все так, чтобы конструкция не свалилась и первичный и вторичный контуры не столкнулись вместе (именно для этого и нужен каркас). В идеале расстояние между ними должно быть в районе 1 см.

После соединяем все воедино. К плюсу источника питания подсоединяем первичный контур и один резистор, к которому последовательно подключаем другой резистор. К концу второго резистора подключаем вторичный контур и транзистор. Другой конец первичного контура подключаем ко второму контакту транзистора. А третий контакт транзистора подключаем к минусу источника питания.

При подключении важно не перепутать контакты транзистора. Также к нему нужно прикрутить радиатор или другое охлаждение. Все готово, можно пробовать устройство на деле. Однако не стоит забывать о безопасности. Ничего не трогать, только в диэлектрике!

Проверить работоспособность установки можно по наличию стримера или, если такового нет, можно поднести лампочку к катушке, и если она загорится, то все в порядке.

Фото катушек Тесла своими руками

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.



Сегодня расскажу о миниатюрной транзисторной катушке тесла, так же эту схему называют качером.

Устройство создаёт высокочастотное высоковольтное поле в котором без проводов загораются различные газонаполненные лампы (например лампы дневного света). Так же на конце вторичной обмотки образуется красивая высоковольтная искра которую можно потрогать не боясь получить удар током!

Для начала необходимо намотать высоковольтную катушку (L2), для каркаса можно использовать что угодно в виде трубки диаметром 3-10см, например канализационные трубы, также нужен медный провод в эмали толщиной 0.1-0.3мм достать его можно из различных радиоэлектронных устройств либо купить на радиорынке.

После того как обзавелись проводом, нужно намотать его на каркас виток к витку без перехлёстов и значительных пробелов, порядка 1000 витков, хотя бы 600. Далее необходимо заизолировать и закрепить намотку, можно конечно обмотать катушку скотчем или изолентой, но выглядит это неочень, я рекомендую полакировать обмотку в несколько слоёв.

Первичная обмотка (L1) делается более толстым проводом, 0.6мм и больше, 5-12 витков, каркас для неё подбирается хотя бы на 5мм толще вторичной обмотки.

Теперь соберем простую схему, транзистор можно практически любой NPN, можно и PNPнужно будет только поменять полярность питания, в моём случае это импортный BUT11AF (он был выбран по тому что ближе всех лежал на столе:-), из русских хорошо подходят КТ819, КТ805.
Питание качера это любой блок питания 12-30В с током от 0.3А.

И так параметры моей катушки тесла:
Вторичка - ~700 витков проводом 0.15мм на каркасе 4см.
Первичка - 5 витков проводом 1.5мм на каркасе 5см.
Питание – 1.2-24В с током до 1А.

Теперь о настройке, кладем какую нибуть лампу на катушку, чтобы точно знать когда качер заработал, резисторы выставляем в среднее положение, подаём питание, крутим резистор с плюса на базу если ничего не происходит нужно пометь местами выводы первичной обмотки и повторить операцию, должно заработать, теперь можно покрутить резистор с минуса на базу, порастягивать/посжимать витки первички, подобрать их количество и т.д.